Vierodt/Simultaneous Equation Method

Procedure:

Step 1: Preparation of standard solution of Telmisartan

- i. Standard stock solution of Telmisartan is prepared by dissolving 10 mg of Telmisartan drug in a 10 mL volumetric flask using methanol (If drug is not dissolved, sonicate it for 15 minutes). Stock solutions of 1000 μ g/mL were obtained in this manner.
- ii. Then, take pipette out 1 ml of solution from above prepared 1000 μ g solution and add it into 10 ml volumetric flask. Make up the volume up to the mark with pH 7.5 phosphate buffer as a solvent. A solution of 100 μ g is prepared.
- iii. From these 100 μ g stock solutions, working standard solutions of concentration 5, 10, 15, 20, 25 μ g/mL each were prepared by appropriate dilutions.
- iv. Working standard solutions of concentration 10 μ g/mL were scanned in the entire UV range to determine the λ max. Use solution prepared by dissolving (1 ml methanol + 9 ml pH 7.5 phosphate buffer) as a blank solution.
- v. In our case the λ max of Telmisartan were found to be 295 nm.

Step 2: Preparation of standard solution of Hydrochlorothiazide

- i. Standard stock solution of Hydrochlorothiazide is prepared by dissolving 10 mg of Hydrochlorothiazide drug in a 10 mL volumetric flask using methanol (If drug is not dissolved, sonicate it for 15 minutes). Stock solutions of 1000 µg/mL were obtained in this manner.
- ii. Then, take pipette out 1 ml of solution from above prepared 1000 μ g solution and add it into 10 ml volumetric flask. Make up the volume up to the mark with 0.1 M HCl solution as a solvent. A solution of 100 μ g is prepared.
- iii. From these 100 μ g stock solutions, working standard solutions of concentration 5, 10, 15, 20, 25 μ g/mL each were prepared by appropriate dilutions.
- iv. Working standard solutions of concentration 10 μ g/mL were scanned in the entire UV range to determine the λ max. Use solution prepared by dissolving (1 ml methanol + 9 ml 0.1 M HCl) as a blank solution.
- v. In our case the λ max of Hydrochlorothiazide were found to be 224 nm.

Step 3: Take absorbance of all stock solution of Telmisartan

- i. Measure the absorbance of all the five-stock solution of concentration 5, 10, 15, 20, 25 μ g/mL of Telmisartan on UV at both wavelength of 295 nm and 224 nm. Use solution prepared by dissolving (1 ml methanol + 9 ml pH 7.5 phosphate buffer) as a blank solution.
- ii. Note the absorbance of all the stock solutions of Telmisartan in below table.

Table 1: Absorbance of stock solutions of Telmisartan		
Conc.	Absorbance at $\lambda 1 = 295$ nm	Absorbance at $\lambda 2 = 224$ nm
5 µg/mL	0.221	0.416
10 µg/mL	0.332	0.731
15 μg/mL	0.635	1.152
20 μg/mL	0.831	1.567
25 μg/mL	1.013	1.895

Step 4: Take absorbance of all stock solution of Hydrochlorothiazide

- i. Measure the absorbance of all the five-stock solution of concentration 5, 10, 15, 20, 25 μ g/mL of Hydrochlorothiazide on UV at both wavelength of 295 nm and 224 nm. Use solution prepared by dissolving (1 ml methanol + 9 ml 0.1 M HCl) as a blank solution.
- ii. Note the absorbance of all the stock solutions of Hydrochlorothiazide in below table.

Table 2: Absorbance of stock solutions of Hydrochlorothiazide		
Conc.	Absorbance at $\lambda 1 = 295$ nm	Absorbance at $\lambda 2 = 224$ nm
5 μg/mL	0.055	0.453
10 µg/mL	0.06	0.55
15 μg/mL	0.119	0.845
20 µg/mL	0.177	1.131
25 μg/mL	0.226	1.539

Step 5: Calculate the absorptivity

i. Convert the concentration of stock solution from μ g/mL to μ g/100 mL. Then convert it from μ g/100 mL to g/100 ml.

For example,

10 μg/mL → 1000 μg/100 mL → 0.001 g/ 100 mL

ii. Then calculate the absorptivity from the absorbance by using the below formula. (Use molar concentration in gram to calculate the absorptivity)

$$A = \varepsilon c l$$

Α	Absorbance	
ε	Molar absorption coefficient	M ⁻¹ cm ⁻¹
С	Molar concentration	м
l	optical path length	cm

For example,

Absorptivity = Absorbance/Concentration = 0.332/0.001

= 332

Table 3: Absorptivity (Telmisartan)			
Conc.	Absorptivity at $\lambda 1 = 295$ nm	Absorptivity at $\lambda 2 = 224$ nm	
5 μg/mL	44.2	83.2	
10 µg/mL	332	731	
15 μg/mL	423.3333333	768	
20 µg/mL	415.5	783.5	
25 μg/mL	405.2	758	

Table 4: Absorptivity (Hydrochlorothiazide)			
Conc.	Absorptivity at $\lambda 1 = 295$ nm	Absorptivity at $\lambda 2 = 224$ nm	
5 μg/mL	11	90.6	
10 µg/mL	60	550	
15 μg/mL	79.33333333	563.3333333	
20 µg/mL	88.5	565.5	
25 μg/mL	90.4	615.6	

Step 6: Take the absorbance of marketed tablet

- Purchase a tablet from market that contain the same amount of drug as of your formulated tablet. (For example, your formulated tablet contains 40 mg Telmisartan and 12.5 mg Hydrochlorothiazide then purchase a marketed tablet that should also contain 40 mg Telmisartan and 12.5 mg Hydrochlorothiazide)
- ii. The marketed tablet is then crushed to a fine powder. An accurately weighed powder sample equivalent to 25 mg of Telmisartan was transferred to a 25 ml volumetric flask.
- iii. Calculate the equivalent weight by using below formula.

 $Equivalent W eight = \frac{Quantity Required \times Average W eight of Tablet}{Label Claim}$

- iv. Then volume was made up to the mark with methanol solution and sonicate for 15 minutes to ensure the powder dissolves properly. The concentration of prepared solution will be of $1000 \ \mu g/mL$.
- v. The solution was then filtered through Whatman filter paper no. 41.
- vi. Then pipette out 1 ml from filtered solution and make volume with pH 7.5 phosphate buffer solution to produce a stock solution of concentration $100 \mu g/mL$.
- vii. Again, pipette out 2 ml from above solution and volume was make up with pH 7.5 phosphate buffer solution to prepare a stock solution of concentration $20 \ \mu g/mL$.
- viii. Measure the absorbance of stock solution of concentration 20 µg/mL on UV at both wavelength of 295 nm and 224 nm. Use solution prepared by dissolving (1 ml methanol + 9 ml pH 7.5 phosphate buffer) as a blank solution.
- ix. Note the readings in below table.

Table 5: Absorbance of stock solutions of marketed tablet		
Conc.	Absorbance at $\lambda 1 = 295$ nm	Absorbance at $\lambda 2 = 224$ nm
20 μg/mL	0.895	1.871

Step 7: Determine the ax1, ax2, ay1 and ay2

- i. Determine the ax1, ax2, ay1 and ay2 from the table 3 and table 4.
- ii. Were,
 - $ax1 = Absorptivity of Telmisartan at \lambda1$
 - $ax2 = Absorptivity of Telmisartan at \lambda 2$
 - ay1 = Absorptivity of Hydrochlorothiazide at $\lambda 1$
 - ay2 = Absorptivity of Hydrochlorothiazide at λ 2

Step 8: Determine the A1 and A2

- i. Determine the A_1 and A_2 from the table 5.
- ii. Were,
 - $A_1 =$ Absorbance at $\lambda 1$
 - $A_2 =$ Absorbance at $\lambda 2$

Step 9: Determine the Cx and Cy

i. Determine the Cx = Concentration of Telmisartan and Cy = Concentration of Hydrochlorothiazide by using the below formula.

$$Cx = \frac{A_2 a_{y1} - A_1 a_{y2}}{a_{x2} a_{y1} - a_{x1} a_{y2}}$$
$$Cy = \frac{A_1 a_{x2} - A_2 a_{x1}}{a_{x2} a_{y1} - a_{x1} a_{y2}}$$

 ii. The founded value of Cx will be in g/100 ml. So, convert the value in g/10 ml and then to mg/10 ml.

For example,

The founded value of Cx = 0.001986518 g/100 ml0.000198652 g/10 ml 0.198651755 mg/10 ml iii. It means 0.198651755 mg of Telmisartan drug is present in 2 ml of stock solution. Now find how much amount of drug should present in 10 ml by doing cross multiplication.

iv. Multiply the founded X value with 25 to obtain the drug present in 25 ml of stock solution.

X =	0.993259	
Λ-	0.775257	
	x 25	
	FINAL = 24.8314	75

v. Follow the step ii, iii and iv for obtaining the concentration of hydrochlorothiazide drug.